ADS Application Notes

Wireless Communication Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

The Design of Spiral Inductor for Power Amplifier Impedance Matching Application at 5.2GHz using Momentum Package in ADS

Introduction

This application note describes the design procedure of spiral inductor for Power Amplifier (PA) impedance matching application at 5.2GHz using the Momentum Package in ADS. To improve the power efficiency of PA, impedance matching network is necessary for input and output ports of PA to make better signal transfer. Spiral inductor is an essential element for impedance matching network in integrated circuits.

Design procedures

In order to obtain the accurate inductance value and Q-factor value of spiral inductor at designed frequency, EM simulation is needed to conduct by the Momentum Package in ADS. The simulation procedures will be described step by step as follows:

1. Open ADS program. Choose "File \rightarrow New Project" to open a new project.

2. In the new schematic of the project, choose "Layout \rightarrow Generate/Update Layout" to open the Momentum environment to make the EM simulation settings.

			-			_				a.a.			E1 -4 -40	a	an an	14.00	an a			-	1 - 1	4.00			1 m			<u></u>		-	11.64	0.04 A	-	-	A 1
8	Fu_p	rj] unti	itled1	I (S	che	ma	tic)	:1																											
File	Edit	Select	View	w 1	Inse	t	Opt	ions	T	ools		Layı	out	Sin	nula	bə	Wi	ndo	w	Dyt	nam	icLir	ĸ	Des	ign	Guid	le	Hel	p						
	9	>	a	3	R	·	ļ.	¢	•¢(1	1	G	iene Indo	Ger Ger	s/Up nerr	dat ste/	e La Upd Re F	iyo. iate	 	her	To	يد ا			4.4	Ģ	4		ţ		+	7	¢ ;	}	îþ
Lumped-Components -									Fix Component Position						5	 - A.W	1	b,	Ê	ā '	\leq		.	1	\$										
	~ F	-	- E									P	ree	Con	por	neni	t Po	sibio	n						Ŀ			,							
<u> </u>	2	R -	11					•		•	1	5	how	Equ	uiva oloc	ilent ad i	: Co	mpo	ner	nt .					Ŀ			•				1	•		1
<u>e</u> ,	~	im.									1	5	how	Co	mpc	ner	ks \	With	No	Art	wor	k			Ľ										
		-	1.			-	-		-	-	-	0	lear	Hig	hlig	hteo	d Co	mp	one	nts					Ŀ		-								
		<u></u>	Ŀ								•	¥ S	how	Co	nne	cteo	d Co	mp	one	nts					Ŀ			,	,			•	•		•
	a. 1		11								1	S	how	Fix	ed (Com	ipon	ent	s						Ľ			,				•			•
DOF	eed 0	CBlick	11			-	1	1	-	1	f	1				1			1						1		-				-			1	1
ll e	∍ [`,	\sim									,																	,				,			,
SH	N TRO	UTIND				-				-			-	-			-				-														
-6	<u>ب</u>	sp.	1 ·																						•			•				•	•		•
<u></u>		PNG	1.1				-																					,							

3. After opened the Layout window, choose "Momentum → Substrate → Create/Modify" to define the material parameters of the multilayer substrate.

4. Depends on different integrated circuit requirement, spiral inductors will fabricated on different substrate materials. Push "Add" button in the substrate modification window in the tag "Substrate Layers" to add different layer of substrates. While for each substrate layer, input the corresponding layer thickness, Permittivity, Permeability and Loss Tangent to define the characteristics of the substrates.

				_	
reate/Modify Substrate:4			X el		
Substrate Layers Metallication	Lasert		010 -	221	U A
Nerve: L1_Jay			10 -+== -	+++	- · · ·
Select a substrate layer to edit D	R define a new layer.				
Substrate Layers	Thickness	Substrate Layer Name			
16 15 14	Pemitivity (Ei)	Permability Mul			
223	Re, Conductivity 💌	Re, Loss Tangent 🗶			
Add Cut Farm	[11.9 Conductivity (S/m)	11 Loss Tangent			
	line.	alla			
av 1	[344] e	al as l			
UK	-rtee Can	nep			

5. After defined the substrates layers. Choose the tag "Metallization Layers". For a typical spiral inductor, there are two metal layers (spiral metal turns and underpass) which are connected by metallic via hole. For each of the metal layer and the metallic via hole, the metal thickness and conductivity needed to input. In the following example, the spiral metal turns are located at 12th layer, the underpass metal located at 9th layer while the via hole metal connected the two metal layers.

Substate Layers Metallication Layers	8			A A	-	010		
Select a layout layer to map as a strip or or as a via to a substrate layer.	lot to an interface plane (dasher	t line)		10	++=====	- 1	-++	1
Layer Mapping	Layout Layer Co	nductivity						
Layout Layers	Definition (cond)							
cond	Signa (Re, thick	ness	-					
Substrate Layers:	Conductivity	- Constant Inc.	-					
FreeSpace	3.816E+007	Istemenson	-					
a14	2.34	un	-					
a13	Overlap Preced	ence			_			
et2 Stip cond	-1 -27							
L								
Stip Ed. Via	Urniap							
	1.5							

6. After defined the substrate and metal layers, the shape of the spiral inductor need to draw by the "polygon" option in the window. While different layer of the metals and metallic via hole need to draw with the correspondingly metal layers defined before. The coordinates of the polygons can be input by choosing "Insert → Coordinate Entry…".

7. Before setting the simulation option. It need to add two ports to the spiral inductor as shown below by adding the "port" to the two endings of the spiral inductor.

Fu	uri]U	(Layor	it)(4									
Ð	dt Sele	st View	i insert C	Options Tools 5	chematic Momen	ntum R.P. Window	DesignGuide Help	1				
	D	18		••••	<u>></u> _	 I (1) I (2) <li< th=""><th>à à 🔨</th><th>128</th><th><u>†</u>⊊@@</th><th>501</th><th>û□ 0 ,</th><th>A</th></li<>	à à 🔨	128	<u>†</u> ⊊@@	501	û □ 0 ,	A
.in	es-Mic	rostrip				[•]÷ ∄	1 📸 📐 🖂	s cond	<u>1</u>	+= + 1		
5点		-										
ne J., ret	HBend HBrind					Port						
2. 1	\$ ₹00											
2m う	Moroco D2 Mourse			. [\supset	· `		_1		$\mathcal{D}^{\prime}\mathcal{O}$) .	-
0- 9	HEAP1						∕⊾	┛़∖				
W2 14												
E	20											

8. Afterward, Choose "Momentum \rightarrow Simulation \rightarrow S-parameters..." to do the simulation settings.

9. Now, go to set the frequency range that we are interested in. At initial design, we can set a wider range of frequency to see the performance of spiral inductor.

Fu_prj]L1 () Edit Select	Leyout):4 View Insert Options	Simulation Control:4			1	×
		Stimulus Select a frequency plan fro	m list to edit or define a new one			
ines-Micro	strip	Frequency Plans Type	Fstart Fst	op Npts/Step	Edit/Define Frequency Plan Sweep Type	101
		Linear *	1.000D GHz 20.000	00 GHz 1.000 GHz	Lines Stat Stat Stop 30 Frequency Step 1 GHz	
0 💠		Cut	Paste	Update	Add to Frequency Plan List	
oen Moroco D Tre Monator		Process Mode Foreground	Solution Files Beuse files from the previous simulation	Data Displ	ter data display when tion completes	
		C Background C Queued	Dataset [L1_reon.ds	Browse	on1 Browns.	
		Simulate	Apply	Cancel	Help	

10. After simulation, in the datasheet, several equations can be added to extract the inductance and Q-factor of the spiral inductor.

11. After the initial simulation, we can see if the inductance value of the designed spiral inductor meets out impedance matching needs. If the inductance value is suitable, we can then go to check the Q-factor value. We may found out that the peak of the Q-factor is located at a higher frequency then that we need (5.2GHz), it means there is a need to modify the physical dimension of the spiral inductor to achieve the optimal performance.

Conclusion

The full steps of designing a spiral inductor used for power amplifier impedance matching application are shown previously. It can be seen that with the powerful simulation tool, Momentum Package in ADS, spiral inductor with any kinds of dimensions, size and metal turns on arbitrary dielectric materials can be precisely simulated within short period of time.