ELEC4430 Integrated Power Electronics

Course Description

Power computation, diodes and rectifier circuits, power factor correctors, switch mode power converters, magnetic components, switch capacitor power converters, linear regulators, and integrated circuit techniques for controller design. *Prerequisite(s)*: ELEC 3400

<u>List of Topics</u>

Week I	Introduction; Power Computation
Week 2	Power Factor and Crest Factor; Diodes Circuits
Week 3	Rectifier Circuits; Voltage Doubler
Week 4	Switching Converters; Steady State Operation
Week 5	Other Switching Converter Topologies and Their Characteristics
Week 6	Non-ideal Performance of Switching Converters; DCM Operation
Week 7	Control Methodology; Band-Band Control
Week 8	PWM Control; PFM Control
Week 9	Current-Mode Control; Peripheral Building Blocks
Week 10	SMPC Closed-Loop Response and Stability; Magnetic Materials
Week 11	Air-gap and Inductor Design
Week 12	Linear Regulators; Shunt and Series Regulators
Week 13	Stability and Compensation Technique; Protection Circuitry

Statement of Objectives/Outcomes:

On successful completion of this course, students will be able to:

- CO1 recognize magnetic quantities such as magnetic flux, permeability and reluctance, and compute magnetic quantities relating to inductors and transformers.
- CO2 recognize and compute electrical quantities such as power and work done related to both DC and AC circuits.
- CO3 compute operating parameters and characterize the performance of power converters and regulator circuits.
- CO4 analyze and design component parameters for power converters and regulator circuits.
- CO5 apply software (CAD) tools to design, simulate and analyze power converters and regulator circuits.

Textbook(s):

Lecture notes will be available on the course webpage.

References:

- 1. D.W. Hart, Power Electronics, McGraw-Hill, 2011.
- 2. P.T. Krein, Elements of Power Electronics, Oxford, 1998.
- 3. R.W. Erickson and D. Maksimovic, *Fundamentals of Power Electronics*, Second Edition, KluwerAcademic Publishers, 2001.

Relationship of Course to Program Outcomes:

Please refer to the Report Section 4.3.2 (iii).

Grading Scheme:

Homework	10%
Project	15%
Midterm Examination	25%
Final Examination	50%